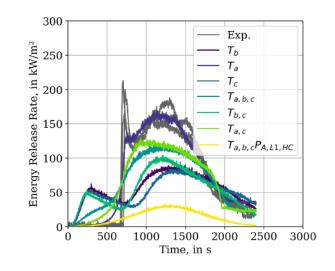


EXPERIMENTAL CHARACTERIZATION OF PYROLYSIS DURING CABLE FIRES

PhD seminar Braunschweig


28/11/2019 I KAREN DE LANNOYE

Member of the Helmholtz Association

MOTIVATION

- 5% of home structure fires caused by electrical wire and cable insulation [1]
- Potential source of fire: residential buildings, nuclear powerplants, Aircrafts, spacecrafts,...
- Challenging combined system
- Gap between experimental data and modeling
 - Different boundary conditions
- Spatially and time resolved information

(a) Incident heat flux of 25 kW/m^2 .

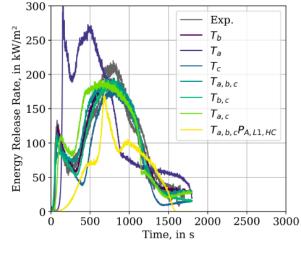


Figure from [2]

STRUCTURE OF A CABLE

- Polymer insulation
 - PE, PVC, fluorinated ethylene propylene or ethylene tetrafluorpvco-ethylene
 - Flame retardant additives
 - Multiple insulation layers
- Metallic core
 - Strongly influences heat transfer process
 - Joule heating: heat source
 - External heating: heat sink
- → Strong interaction between insulation and core
- Scaling effect

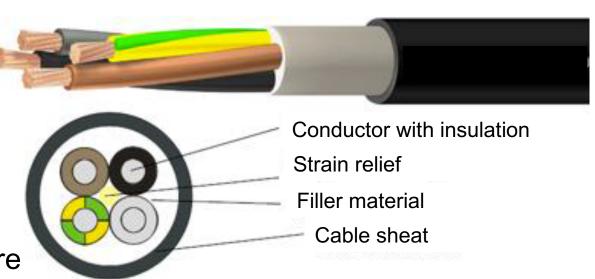
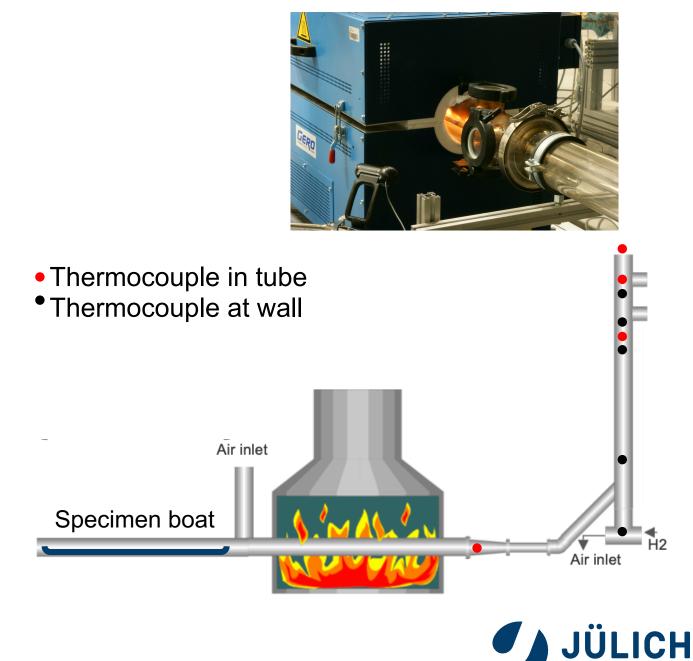


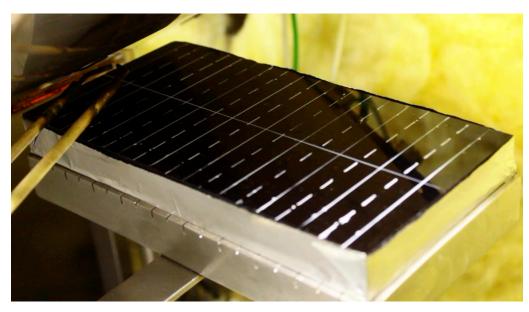
Figure from [3]



Reference: [1,4]

Page 3

Experimental set-up


- Quartz glass tube
- Oven:
 - heating rate 300 K/hour
 - Max temperature 1050°C
- Movable specimen boat
- Specimen boat: 80 cm
- Gasanalyzer: CO, CO₂, H₂ and O
- Design balance for weight loss measurements

Forschungszentrum

- Burning PMMA in TGA, cone calorimeter and tube furnace
 - Study scaling effect
 - PMMA easy burning behaviour
 - Decompose almost entirely to monomers
 - Steady burning rate

Movie: private communication with Corinna Tretin

Thermogravimetric analysis	Cone calorimeter	Tube furnace
Mass loss and mass loss rate	Heat release rate determined by oxygen consumption	Mass loss Time and spatially resolved data
Sample size: mg	Sample size: 0.1m x 0.1m	Sample size: 70 cm
Controlled boundary conditions	Open → no controlled boundary conditions	Controlled boundary conditions
Amount of material Lack of heat feedback		

PhD overview

Goal: conducting experiments to improve general understanding of cable fires and have additional for modeling and CFD methods

0-3 months (currently)	Literature research, Participating in and data analyzes of cathalyzator experiments
3-5 months	Setting up tube furnace model with FDS Designing balance for tube furnace
5-8 months	Experiments in TGA, Cone calorimeter and tube furnace with PMMA
5-6 months	Determining which cables to study
7-12 months	Studying and implementing possible improvements to the experimental set-up
10 months – 3 years	Conducting experiments
2,5 – 3 years	Writing

[1] Huang, X. & Nakamura, Y. (2019). A Review of Fundamental Combustion Phenomena in Wire Fires. *Fire technology 2019*. Retrieved from: https://doi.org/10.1007/s10694-019-00918-5

[2] Hehnen T et al., Numerical Fire Spread Simulation in CHRISTIFRE Phase 1 Cable Tray Installation Based on Material Pyrolysis, in progress.

[3] Kubelt, C. M. Ablagerungsverhalten von Kernschmelz- und Brandaerosolen in einem DWR-Sicherheitsbehälter (doctoral dissertation).

[4] Matala, A. (2013). *Methods and applications of pyrolysis modelling for polymeric materials (doctoral dissertation).* (VTT science 44).

[5] Hurley, M. J. (2016). Sfpe handbook of fire protection engineering. New York, NY: Springer.

